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Abstract

We present a mathematical model able to describe the complete molecular weight distributions of polyethylene during reactive
modification by organic peroxides. The method is applicable to batch processes, such as modification in a press or a plug-flow extruder,
and in its present form is valid up to the gel point. We apply probability generating function definitions to the mass balances of radical and
polymer species in the reacting medium. Three different probability generating functions are applied, each one directly applicable either to
the number, weight or chromatographic distributions. These generating functions are numerically inverted to obtain the corresponding
calculated molecular weight distribution. Two different inversion methods are used, and their relative performances analyzed. Predictions are
compared with qualitative experimental data obtained in a press. Model predictions on molecular weight distributions are in agreement with

experimental trends. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In polyolefins, final properties depend directly on average
molecular weight, molecular weight distribution and short
and long chain branching indexes. Those characteristics
may be changed either by manipulating operating and
design conditions in the reactors or by treating the virgin
resin with organic peroxides. The latter is becoming more
popular in view of its lower cost. It is in principle possible,
through reactive processing, to change relatively inexpen-
sive commodity polymers into higher priced specialty poly-
mers [1]. In general, a trial and error approach is used to
establish the operating conditions that will produce a given
polymer, since peroxide addition leads to a complex situa-
tion where several chemical reactions occur simultaneously.
A theoretical understanding of the process would help to
minimize the need of trial runs, with their associated
expense. For example, a model to simulate and predict poly-
mer properties given the operating conditions of the reactive
modification would help in understanding how to tune the
final properties of the modified resin. This would be an
important aid in the design of new products, as well as in
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the outlining of optimization strategies prior to production
at commercial scale.

Few mathematical models in the literature describe the
specific process of modification of polyethylene [2]. Very
useful reviews on modeling may be found in Hamielec et al.
[2] and Suwanda and Balke [3]. Some of the models use a
statistical approach [1,2,4—8], where the emphasis is on the
prediction of molecular weight distributions and gel points.
For example, Saito [6] and Hamielec et al. [7] presented a
differential—integral equation that describes the complete
molecular weight distribution when simultaneous scission
and chain branching occur. The general solution of this
equation is not yet available, but several authors [1,8]
have found solutions for particular cases. The statistical
approach allows the prediction of molecular weight distri-
bution at a given extent of reaction; it does not provide
information as a function of time. In order to be able to
use those equations it is generally necessary to establish
independently the values of the degree of scission and
density of crosslinking.

Suwanda and Balke [3] were the first to use a kinetic
approach to address this problem. They aimed at the
prediction of molecular weight distributions of the modified
polymers. Their model discriminated between molecules
with and without terminal vinyl groups. They considered
crosslinking, end-linking and chain extension in the reacting
system, but neglected scission on the grounds that its effect
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Nomenclature
A pre-exponential factor
C; chromatographic fraction of molecules in the

ith fraction of the chromatogram

E activation energy

f initiator efficiency

1 peroxide initiator

ket kinetic constant for chain transfer to polymer
(L/mol s)

kg kinetic constant for peroxide decomposition (s ')

kna kinetic constant for hydrogen abstraction
(L/mol s)

kq kinetic constant for scission reaction (s~ ')

k kinetic constant for termination by combination
(L/mol s)

M, moment of order a of polymer

M; molecular weight

M., ~ monomer molecular weight

M, number-average molecular weight
M

W weight-average molecular weight
MWD molecular weight distribution
N inversion method parameter
Nexp number of experimental runs
Nz number of points to be evaluated in z

ObjF  objective function

pef any of the probability generating functions

pgfe probability generating function of the chromato-
graphic molecular weight distribution

pgfn  probability generating function of number
molecular weight distribution

pgfw  probability generating function of the weight
molecular weight distribution.

pj(m)  number (j = n), weight (j =w) or chromato-
graphic probability (j = c) of radicals having a
degree of polymerization equal to ‘m’

p;j(m) number (j = n), weight (j = w) or chromato-
graphic probability (j = ¢) of polymer having
a degree of polymerization equal to ‘m’

P, polymer with » monomer units and j terminal
vinyl groups

P, macroradical with » monomer units and j term-
inal vinyl groups

T Papoulis’ parameter

R, initiation radical

RH inert molecule

t reaction time (s)

Wi, weight factor of objective function

Wy, weight factor of objective function

Y, moment of order a of radical

Z transformed variable in pgf functions

Greek symbols

¢(z) number (j=n), weight (j = w) or chromato-
graphic (j = ¢) probability generating function
for size distribution of radicals

Pi(2) number (j = n), weight (j = w) or chromato-
graphic (j = c) probability generating function
for size distribution of polymer

d)}(z) first derivative of the number (j = n), weight
(j = w) or chromatographic (j = c) probability
generating function for size distribution of
radicals

l,[/}(z) first derivative of the number (j = n), weight
(j = w) or chromatographic (j = c) probability
generating function for size distribution of
polymer

Subscripts and superscripts
calc calculated values
exp experimental values

would be equivalent to a reduction in initiator efficiency.
They solved differential equations for polymer molecules of
length ‘n’ with and without terminal vinyl groups, choosing
the overall link-density as the independent variable and
assuming quasi-steady state for radicals of all lengths.
They calculated the distribution for 300—-500 degree of
polymerization points. The model had two parameters
(initiator efficiency, and the double bond reactivity ratio)
which were used to fit the model to experimental
data. For commercial samples of low density polyethy-
lene (LDPE) and linear low density polyethylene
(LLDPE) the model makes a fairly good prediction of
both M,, and molecular weight distribution (MWD). It
also predicts a drop in vinyl content, although not as
large as the experimentally observed one. It failed to
predict MWD changes in high-density polyethylene
(HDPE). If the model was simplified by neglecting terminal

unsaturations, the capacity to predict MWD was lost for
most polyethylenes except HDPE samples of low initial
vinyl content.

In a previous work [9] we proposed a generalized kinetic
model that takes into account not only combination reac-
tions but also transfer to polymer and scission. The model
describes the length of the polymer chain and the concen-
tration of vinyl groups simultaneously. Any number of vinyl
groups per molecule is allowed. The resulting infinite
system of mass balance equations is solved using a double
moment technique. The model predicts number, weight and
z-average molecular weights and the concentration of vinyl
groups as functions of time. The kinetic constants and the
initiation efficiency were estimated through a nonlinear
regression using experimental data in the pregel region.
This model resulted in improved predictions of the experi-
mental data over previous kinetic modeling [3], since it
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gives good estimates of both average molecular weights and
vinyl content.

In this work we extend our previous mathematical model
in order to be able to predict the complete molecular weight
distribution of polyethylene during the modification process
given its operating conditions. We focus on the modification
taking place in a press at isothermal conditions. To this
purpose we establish a simplified set of mass balances for
the reacting species that does not include the usual quasi-
steady state approximation. We assume that each radical
molecule contains only one active site. The effect of the
number of active sites per molecule has been investigated
by Zhu and Hamielec [10], who concluded that for the case
of polymerizations with crosslinking, polyradicals may be
present in significant amounts only near the gel point,
depending on the relative values of the kinetic constants.
The presence of polyradicals should no doubt be considered
in a model that attempts to predict gel points and sol frac-
tions, but it seems reasonable to preserve the monoradical
assumption when dealing with polyethylene modification in
the pregel region. We also assume that reactions are not
diffusionally controlled. Zhu [5] showed that including
diffusion control could affect model results. As we show
in Section 5, our model gives reasonable results without
taking diffusion into account.

Once the model is set up, we apply a transform technique.
The chosen transform is the probability generating function
(pgf). Three different pgfs were defined, to describe the
number, weight and chromatographic distributions, respec-
tively. Pgfs are calculated as functions of residence time,
and are numerically inverted to allow recovery of the mole-
cular weight distributions [11,12]. We previously used this
approach to solve the complete molecular weight distribu-
tion of the polyethylene and EVA copolymers produced in
industrial autoclave reactors obtaining very interesting
results [13]. In that case, the initial values of the pgfs are
zero, since polymer and radicals are not fed to the
reactor. In the present process we start from polymer,
so there exists a nonzero pgf curve from the beginning.
In consequence this pgf must be estimated from MWD of
the virgin resin. As the only available MWD is that of the
polymer as a whole, for the present purpose we lump poly-
mer molecules with and without vinyl groups, considering
them as a single species.

2. MWD Model

We used a simplification of our previously proposed
kinetic mechanism [9] for the modification of polyethy-
lene by peroxides at low concentration. The simplifica-
tion consists in averaging the number of terminal
unsaturated bonds over all polymer molecules. The
remaining characteristics of the proposed kinetic
mechanism remain unchanged from the original one
[9]: it applies to an isothermal modification process,

radicals and macroradicals are assumed to contain a
single active site, and the usual assumption of quasi-
steady state of radicals is not used. This model has
been implemented to work in the pregel region.

The simplified mechanism includes radical generation
by initiator decomposition (Eq. (1)), hydrogen abstrac-
tion (Eq. (2)), termination by combination (Eq. (3)),
chain transfer to polymer (Eq. (4)) and scission (Eq.
(5)):

Initiation

1% 4R, (1)

Hydrogen abstraction

» kng e
P, + R.— P, + RH )

Termination by combination

. .k
Pm+Pr_’Pm+r (3)

Chain transfer to polymer

ke .
pP,+P.—P,+P, “)

Chain scission

. kg .
Py—P,+ P, )

In these equations [ is the initiator (2,5-dimethyl-2,5-
bis(tert-butyl-peroxy)-hexane (DBHP)), R, is the initia-
tion radical, P, and P, are polymer molecules and
macroradicals with » monomer units, respectively, and
RH is an inert molecule.

The next step in modeling this process is setting up mass
balances for all the species involved in the kinetic mechan-
ism. If the modification takes place in a press, the indepen-
dent variable is the reaction time. The same equations can
be applied to the modification process that uses an extruder,
provided plug flow is present. In that case, the independent
variable is residence time.

Mass balances for all the species present during the
process are shown in Eqgs. (6)—(9):

Initiator

i
e kall] (6)

Initiation radical

d[r]

5 = U]~k [R] Y 2mlP,,) (7

m=1
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Polymer molecule P,, (m =1,2,..., )

d[P,,] : S [p
o = hw[R]2mIP,) = ke2mlP,] 3 [P)]

r=1

+ ka[Pu] > 2rP,]

r=1

+ %(1 - 5,",1)":_211 [Py J[P)] + K r_; 1 [P}]
®)
Macroradical P, (m = 1,2, ...00)
@ = kia[R.]2mIP,,] + kmzm[Pm]g [P;]
— ka[P)] 2 2r[P,] + k[P}] 2 LA
k- D[Pk S [P ©)

r=m+1

For this work, we assume that the smallest radical and
polymer molecules have length one. Since both radical
and polymer molecules may have, theoretically, any
length between one and infinity, the resulting mass
balance equations are infinite in number. Several tech-
niques may be applied to allow their solution. Some of
them are useful for calculating the average molecular
properties and others for solving the complete molecular
weight distribution. In this work, we employ the well-
known moment technique [14,15] to obtain average
properties, and pgf transforms to deal with MWD
calculations.

For this purpose we use the following moment equations
(Egs. (10) and (11)).

ath moment of chain length distribution of polymer
molecules
M,=> m'P, a=0,12,.. (10

m=1

ath moment of chain length distribution of radicals

Y,=> mP, a=0,12,.. (11)

m=1

To obtain the moment balance equations for polymer or
radical, both sides of Egs. (8) and (9) must be multiplied
by the ath power of its chain length m (m“), then a
summation over all possible values of m in the reacting

system (m = 1,...00) is performed. After some laborious
algebraic steps, Eqs. (12)—(14) result:

ath moment of polymer
dMm,
dt

= —kno[R]2M 1y — ke 2M 1 Yo + ko 2V, M,
a a 00 m—1
+ 0.5k > ( )Ya_,Y, +h D [P D
=0 \7 m=2 r=1
(12)

ath moment of radicals

dy, .
dta = kha[Rc]zMaJrl + kctY()ZMa+1 - kctYaZMl - thaYO
00 m—1
k(Y1 = Y + kg D [P] D (13)
m=2 r=1
where
Yl - Y() ifa= 0
00 m—1 1 Y, — 1 Y f -1
D> =127 2 BT as
m=2 r=1 1
—Y3_§Y2+—Y1 ifa=2

Egs. (12)—(14) must be solved together with Eq. (7), which
in terms of moments becomes:

d[R.]
dr

It should be noted that M,,; and Y, appear in the
balance of M, and Y, respectively. A closure problem
arises. It is common practice to employ a function of the
moments that are solved through balances to estimate the
highest order moments [15,16]. This can be done exactly
when the distribution type is known. In any other case,
the obtained values are approximated by assuming a
distribution type. When solving up to the second
moment through balance equations, Eqs. (16) and (17)
are used to estimate the polymer and radical 3rd
moments as in our previous work [9]. It is well-
known that predictions of number-average molecular
weights, where zero and first order moments are used,
are not affected by this approximation but second order
moment and weight average molecular weight results
are affected. In view of this, it is very important to
select the type of distribution correctly. For this system,
this selection was done according to the procedure outlined
in Zabisky et al. [16], by which the type of the curve

= 4kyf 1] — 2kp,[R.]M, (15)
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is selected by comparing calculated and experimental
z-average molecular weights.

(M
M; = (_M1 ) M,, (16)
Y, = ( il )3Y 17)
3 Yl 0>

As we explain later, the Oth, 1st and 2nd moments are neces-
sary for the pgf calculations. Egs. (6), (12)—(17) must be
solved simultaneously with the pgf equations.

2.1. Probability generating functions

When calculating the complete MWD, we apply the
concept of pgf to the mass balance equations. The radical
and polymer length distributions may be described in
several different forms. In this work, we consider distribu-
tions in number, weight or chromatography basis. Those
three distributions have associated probabilities. If mole-
cules are chosen randomly using a number (n) probability,
all molecules have an equal chance of being chosen. If the
random selection is made using a weight (w) probability, all
units of mass are equally likely to be chosen. If a chromato-
graphic (c) probability is used, the quantities with equal
probabilities are those with equal value of the product of
mass times the molecular weight. In each case, the prob-
ability that a certain fraction of radical molecules has a
length ‘m’ is symbolized by p;(m), j = n, w or c¢. Given a
discrete distribution of probabilities p;(m), the probability
generating function associated with it is defined as shown
in Eq. (18) [15]:

b2 = D pm)" j=n,w,c (18)

m=0

If the probability distributions for polymers are symbolized
by p;(x), we can also define pgfs for polymer length distri-
butions, as indicated in Eq. (19):

Y@ =D pim)" j=n,w,c (19)
n=0

The transformed variable is ‘z’. Even though z could be
complex, for this work we have only used real z, which in
that case must verify 0 = z = 1. Then, the pgf is a real,
continuous, convex, increasing function of z that may take
values between 0 and 1 [17]. Other useful definitions related
to pgf derivatives are shown in Appendix A. In order
to define the various pgfs, it is necessary to calculate
several different probabilities. This can be done in terms
of concentrations of radical and polymer species, and the
different moments of the distributions as shown in Appendix
A. As an example we show how to calculate the number

probabilities, p,(m) and p;(m), using Egs. (20) and (21):

Radicals : p,(m) = o([Pm] = [I;m] (20)
. 0
> [Pl
m=1
Polymer : pa(m) = OEP'"] = [;Im] (1)
S 1P, ’
m=0

where [P,,] and [P,,] are the molar concentrations of radicals
and polymer of length ‘m’, respectively. The weight and
chromatographic probabilities are calculated as shown in
Appendix A.

2.2. pgf Balances

In order to obtain the pgf balances, it is necessary to
multiply both sides of the mass balance equation for a mole-
cule of chain length m by an appropriate factor. For instance
to obtain the pgf balance of the number distribution, we
multiply by the mth power of z (z"), then sum for all possible
values of m (m = 0,..., 00), finally rearrange the resulting
equation in terms of the distribution moments, the number
pef (pgfn) and pgf derivatives. To obtain the weight pgf
(pgfw) or the chromatographic pgf (pgfc) balance equations,
the mass balance equations are multiplied by mz™ and m?z",
respectively, and the same procedure is followed.

When Egs. (8) and (9) are transformed in this
manner, Eqgs. (22)-(27) are obtained. Applying the pgf
transform to Eq. (8) results in pgf balances of the poly-
mer chain length distribution, and its application to Eq.
(9), in pgf balances of the radical distribution. More
detailed information about this transformation process
may be found elsewhere [18].

Balance of pgfn for the radical number-distribution

d{ YO ¢n(z) }
t

¥ = kpa[Re]2Mozf, (2) + ko 2Yozd ()M

— ko (D2YoM) — ki, (2)Y5 — ky(zd)(2)

k
= du@)Yy + ——=Yo(d,(d) — D)

z—1
(22)

Balance of pgfn for the polymer number-distribution

% = —kna[Re]229, ()Mo — ko229, ()Mo Yo

k
T kahn(@2YoM, + S Yieb, ()

kg
7 — [ Yo(a(d) = 1) (23)
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Balance of pgfw for the radical weight-distribution

d{Y,¢,(2)}

ar = kpa[Re 224, (DM + ko2, (2)2M, Y,
— kb, (22 \ M, — ki, (2)Y1 Y,

— kY1 (z¢1,(2) — $,(2)

k, -
+ m[(ﬁw(Z)Yl(Z 1y

+ 2¥o(1 — ¢,(2))] (24)

Balance of pgfw for the polymer weight- distribution

% = —hna[R]2M29,(2) — kel 2M 1 29,(2) Y,

+ kct Yl d)w(Z)ZMl + kt YO d)n(z)Yl d)w(z)

ks
+ m[‘ﬁw(z)yl(z -1

+2¥o(1 = ¢u(2))] (25)

Balance of pgfc for the radical chromatographic-
distribution

‘”%‘fw = kna[ReJ22Mo Y (2) + k22 ()Y,

— kY2 (2)2M| — kY, d(2)Y)

— kY2(z2(2) — b(2))

ks _ 2
+ -1 [(z = 2)2Y,¢,(2)

+ (2 + D)Yoh(2)
+(Z =22+ DYyhe(2) — (& + Y]
(26)

Balance of pgfc for the polymer chromatographic-
distribution

d(Myy @)} _

ar —kna[R]22My ' (2) — ko 22Mo . (2)Y,

+ ko Yo b (2)2M + kYo, (2)(Y2 b (2)

k.
+Y1¢,() + ———= [z — 7)2Y,¢,,(2)

(z—1)°

+ (2 + YD) + (2 — 22+ DY1¢.(2)

- (& + Y] 27)

Through convenient inversion of each one of the pgf the

corresponding MWDs can be obtained, as detailed in
the sections that follow.

2.3. Pgf model resolution

A very large differential equation system (Egs. (6),
(12)—-(15), (22)—(27)) must be solved to obtain the number,
weight and chromatographic pgf. The total number of equa-
tions is 8 + 6 Nz, where Nz are the number of values of z
where each pgf must be evaluated as required by the
selected inversion method, in our case Papoulis [19,20] or
Stehfest’s algorithm [21,22], which will be described in
Section 3. Other z values may be incorporated in the calcu-
lations in order to improve the accuracy in the numerical
estimation of pgf first derivatives, which appear in all the
pef equations. These derivatives are calculated by backward
finite differences.

The model requires as input data the mass of polymer to
be modified; molecular weight of monomer; number- and
weight-average molecular weights as well as molecular
weight distribution of the virgin resin; peroxide concen-
tration and molecular weight; operating temperature and
residence time.

The pgfs are dependent variables of the system so it is
necessary to extract their initial values from the MWD of
the virgin resin. First, the experimental data is converted to
number fraction (n), weight fraction (w), and chromato-
graphic fraction (c¢) as functions of degree of polymeriza-
tion, as thoroughly detailed elsewhere [11]. To accomplish
the summations indicated in the pgf definitions it is neces-
sary to evaluate the distribution beginning at the lowest
available degree of polymerization (DP;) and perform the
summation with unit steps. Cubic splines [23] are applied to
the experimental data to obtain all the information needed to
calculate Eq. (18). We consider that no radicals are present
in the virgin resin so the corresponding pgfs are null at the
beginning of the modification reaction.

Kinetic parameters are also necessary. The ones used in
this work are presented in Table 1. They are the same as the
ones employed to obtain average molecular weights in our
previous work [9], except for the pre-exponential factor of
the termination by combination reaction. Since the presence
of vinyl groups was not explicitly considered in the present
model (but was considered in the previously reported one),
the modification of the mentioned pre-exponential factor
was necessary so that calculated and experimental average

Table 1
Kinetic parameters

Kinetic constant A (L mol s) E (J mol)

Hydrogen abstraction, ky, 5.00 x 10° 6.28 x 10*
Chain transfer to polymer ke 1.25% 108 6.28 x 10*
Termination by combination, k; 1.20 % 10'° 6.70 x 10*
Chain scission, k; 1.00 % 10* 1.09 x 10°
Initiator decomposition, kg 1.98 x 10" 1.24 % 10°

Efficiency, f = 0.98
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molecular weights matched. An algorithm for least-squares
estimation of nonlinear parameters [24] is used to obtain the
best parameter estimation. The initial guess for the para-
meter was taken from our previous work [9]. The generic
objective function employed was:

chp

Mcalc
n.
ObjF = > {an'l - ot
i=1 n

i

calc
_ wi

MEP

wi

Wy

w

} 28)

where the superscripts ‘exp’ and ‘calc’ correspond to
experimental and calculated values, respectively.

The complete system of equations is solved by means of
Gear’s method [25] for stiff systems. The output of the pgf
model consists of pgfn, pgfw and pgfc as functions of
residence time and z. These quantities serve as data for
the inversion algorithms [11,12]. When inverting pgfn, the
number molecular weight distribution is obtained directly.
Inversion of pgfw and pgfc results in weight and
chromatographic molecular weight distributions, res-
pectively. Emphasis is placed on the chromatographic
MWD of the final modified product, since this is the only
material for which experimental information is available for
comparison.

3. pgf Inversion algorithms

We use in this work the inversion formulas proposed by
Papoulis [19,20] and by Stehfest [21,22] as adapted for the
inversion of pgf transforms. Full details may be found in
Brandolin et al. [11] and Asteasuain et al. [12].

Eq. (29) shows Papoulis’ expression:

1) = 3 awpufesn(-r ) )

n=0

In this equation P,,(x) are Legendre polynomials that can be
calculated from the recursive formula: Py(x) = 1, P;(x) = x,
(n+ 1P, (x) = (2n + 1)xP,(x) — nP,_;(x). This method
has two parameters,r; and N [12]. For the present problem
we found that suitable values for ; may be calculated from
r; = In(2)M,on/M;, that is, a new value for each molecular
weight point where the distribution is to be calculated. The
set of coefficients a,; (n =0, ..., N) are calculated for each
value of r; by solving the system of equations presented in
condensed form in Eq. (30):

k
_ . k—m+1),
ripef(e (Zkﬂ)/) - Z 2(k + 1/2),,41

m=0

api k=0,1,2,...N
(30)

Here, the factors between parentheses in the right hand
side may be expressed generically as (j); and calculated

by means of Eq. (31):

1 1=0
O)z=:{, i ) 3D
G+ D..G+I—1) 1>0.

With this method, f(M;/M,,,,) may be calculated at any
value of M;/M,,,, from the value of the real part of the
transform in a series of equidistant points, defined by the
parameter ;.

Egs. (32) and (33) show Stehfest’s extrapolation formu-
las, where the method parameter is N:

N
f( Mll:;n ) ~ Mmo&ln(z) Z Knpgf(exp<—n Mmon 111(2) ))
n=1

i Mi
(32)
K,, — (_l)l’l+N/2
e N2 = )UK = Dl = k)I2k — m)!
(33)

Each method has optimum parameter values (N and r for
Papoulis or N for Stehfest) that may vary with the particular
problem studied. The evaluation of r (in our case r;) has
been shown earlier. The optimum value of N, for both meth-
ods, was selected according to the SSQI criterion [11,12].
This criterion indicates that the optimum value of the para-
meter is the one that minimizes the sum of squares of the
differences between curves calculated with two successive
values of N.

As for computational effort, both methods require about
Nnmax evaluations of pgf per molecular weight point, where
Niax 18 the largest value of the method parameter used when
applying the SSQ1 criterion.

4. Experimental validation

Table 2 shows the experimental data used for model
validation. The data were obtained in our laboratory

Table 2
Experimental data at temperature = 170 °C and final time = 20 min [26,27]

DBHP concentration (w/w%) Molecular weights

M, M,
0.000 21,700 53,200
0.025 24,700 70,300
0.050 28,600 78,000
0.075 25,800 98,700
0.100 31,350 130,000
0.200 29,400 157,300




2370 M. Asteasuain et al. / Polymer 43 (2002) 2363-2373

2.5E-4
$o
| Ovirgin resin

2.0E-4 H

1.5E-4 —
S J

1.0E-4

5.0E-5

0.0E+0 — TTTIT T T TTTTI] N

1000 10000 100000 1000000
Molecular Weight (g/mol)

Fig. 1. Measured chromatographic MWDs (¢;) for virgin resin and modified
products.

[26,27]. A commercial linear high-density polyethylene,
from Oxy Petrochemical (M, = 21,700; M,, = 53,200),
was chemically modified with DBHP. A powder of the
virgin resin was impregnated with a peroxide solution to
obtain five different peroxide concentrations: 0.025, 0.05,
0.075, 0.1 and 0.2 w/w%. Each mixture was treated at
170 °C in a press for 20 min to ensure complete reaction.
MWD of product samples were analyzed by size exclusion
chromatography (SEC) in a Waters-150-C ALC-GPC. The
measured data for the virgin resin and modified samples
were analyzed as if they all were linear polyethylenes. For
the modified resins, the experimental MWD curves obtained
by these means are only indicative of the modification effect
on MWD. As result of the branching produced by the treat-
ment, actual weight average molecular weights are expected
to be higher than those measured by SEC. This effect must
result more evident as the initial peroxide concentration
increases. As the virgin resin is a linear polyethylene the
measured MWD can be taken as valid input data for the
model. Fig. 1 presents the MWD of the virgin and modified
resins.

5. Results and discussion

The model predicts an increase of the average molecular
weights with reaction time for a given initial peroxide
concentration, as expected at this temperature where termi-
nation by combination is the main reaction [26]. This is in
accordance with our previously reported results for this
particular set of data [9]. We have compared model predic-
tions at final reaction time with experimental results
obtained with all the initial peroxide concentrations shown
in Table 2. In particular, in Fig. 2 we show number and

= ] My o <
£ © *
k) s ©
»
£ 1E+5 o s
=2} n
o | * &
= 1 ¢
© *
3
3 . Mn o
S . o]
= .« °* o o ©
o L o ©O 8
S A
o
2
<<

1E+4 -

T T T T T T T T T
0.00 0.05 010 015 0.20 0.25

Initial Peroxide Concentration (w/w%)

Fig. 2. Effect of initial peroxide concentration on average molecular
weights of resins treated at the operating conditions given in Table 2.
Hollow symbols: calculated values; filled symbols: experimental measure-
ments.

weight average molecular weights as functions of the initial
peroxide concentration. Each calculated point (hollow
symbols) is obtained from a different simulation run. Filled
symbols indicate experimental values. As the peroxide
concentration increases, the weight average molecular
weight of the modified resin increases significantly. The
number average molecular weight remains close to that of
the virgin resin, indicating that scission reactions are less
important than crosslinking reactions. The model follows all
these changes adequately. In general, the differences
between calculated and experimental data are of the same
order of magnitude of the inherent errors of the experimen-
tal measurements. The largest difference appears for the
weight average molecular weight obtained at the highest
peroxide concentration employed (0.2 w/w%). This is to
be expected because the material is approaching the gel
point. It must also be remembered that the presence of
branches was not considered when analyzing experimental
SEC data.

In what follows, the calculated MWD curves were
obtained by inversion of the corresponding pgf as explained
earlier, using the optimum value of Papoulis’ parameter N.
This value was found to be N = 4. Results of comparable
quality were obtained when using Stehfest’s method. In this
case the optimum parameter is also N = 4. In order to find
those optimum parameters, the values of N, were 15 for
Papoulis’s method and 18 for Stehfest’s (Papoulis’s solu-
tions degraded badly for values of Ny, > 15). For our
implementation, then, Papoulis’s algorithm was computa-
tionally less expensive, since, as explained earlier, the
expense is directly proportional to N.

Figs. 3 and 4 show calculated results for the resin
modified with 0.2 w/w% peroxide. We show the calculated
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Fig. 3. Evolution with time of average molecular weights for material
treated at the operating conditions given in Table 2 and initial peroxide
concentration = 0.2 w/w%. Hollow symbols: calculated values; filled
symbols: experimental measurements.

evolution of average molecular weights with time in Fig. 3,
and of chromatographic MWD in Fig. 4. As the reaction
proceeds average molecular weights increase, particularly
the weight average molecular weight (see Fig. 3). The
MWD broadens accordingly, as shown in Fig. 4. It is
also apparent from this figure that there is a period, up
to about one third of the total reaction time, where the
MWD curves remain unimodal. Then a shoulder begins
to appear and grow, until the final product presents a
bimodal MWD curve. This may be attributed to crosslinking
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Fig. 4. Calculated chromatographic MWDs (c;) at different reaction times
measured in seconds, for 0.2 w/w% DBHP and the operating conditions
given in Table 2.
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Fig. 5. Calculated chromatographic MWDs (c;) for different initial peroxide
concentrations measured in weight percentage, and for the operating condi-
tions given in Table 2.

reactions that become more important as the molecules
grow larger.

The calculated chromatographic distribution obtained at
the end of the process for different initial peroxide con-
centrations is shown in Fig. 5. The corresponding virgin
resin MWD is also shown in the figure for comparison. A
broadening in the distribution is predicted as the initial
peroxide concentration increases. This may be explained
as a consequence of the larger number of initiation radicals
present when using higher peroxide concentrations, some-
thing that favors crosslinking reactions. MWD curves
show an increase of the high molecular weight tail with
respect to the one for the virgin resin. A shoulder appears
at 0.1 w/w% and finally a bimodal curve is obtained for
0.2 w/iw%.

We have found [11,12] that the most dependable
prediction is that of weight MWD. This may be attributed
to the fact that it does not stress either the low molecular
weights, as the number distribution does, or the very high
molecular weight tail, as the chromatographic distribution.
Even so, the predicted chromatographic MWDs for all
peroxide concentrations show similar shapes and trends as
the experimental ones, as a comparison between Figs. 1 and
5 shows. It must be noted that no parameter adjustment was
performed using data of a complete MWD.

As an example of other capabilities of the model
presented in this work, we calculate the effect of tempera-
ture on the modification of high-density polyethylene. The
results may be observed in Figs. 6 and 7, where the calcu-
lated average molecular weights and MWDs are presented
as functions of operating temperature for 0.2 w/w% initial
peroxide concentration. The decomposition constant of
the peroxide, DBPH, was calculated as a function of
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Fig. 6. Effect of temperature on average molecular weights for a resin
modified with 0.2 w/w% DBHP. Hollow symbols: calculated values; filled
symbols: experimental values.

temperature using the data in Table 1. It may be observed in
Fig. 6 that in all cases the modified resins have higher aver-
age molecular weights than the virgin resin. The figure also
shows that the maximum average weights are obtained
when performing the modification at 170 °C. As the treat-
ment temperature increases, the degree of modification
becomes less important. This may be attributed to an
increasing importance of the scission reaction with tempera-
ture. Again, the MWD results follow well this trend, as may
be observed in Fig. 7.

2.5E-4 - ©
S OO virgin resin
4 0.2 ww% o o
o]
o]
2.0E-4 8 o
(o]
i o
o
5 o
1.5E-4 — o o
S J . o
° o
1.0E-4 —
5.0E-5 —
0.0E+0 T e TTTTTT] T T TTTTT0] T T TTITP T T 7T
1000 10000 100000 1000000
Molecular Weight (g/mol)

Fig. 7. Effect of temperature on final chromatographic MWD for a resin
modified with 0.2 w/w% DBHP. Papoulis’ method was used in the
inversion.

6. Conclusions

In this paper we propose a model for the reactive modi-
fication of polyethylene aiming at developing a practical
tool for prediction of molecular weight distributions. We
have solved a system of transformed mass balance equations
that describes the peroxide modification of polyethylene in a
batch process at the pregel region. We have shown that the
application of pgf transforms to the mass balance equations
allows the description of the MWD of the modified
polymers. Numerical inversion of the transformed variables
has allowed a very good recovery of the entire molecular
weight distribution, showing similar trends as the ones
shown by the experimental distributions measured by
SEC. The two numerical inversion methods used gave
results of comparable quality.

Even though model validation was done using data from
material modified in a press, the kinetic mechanism should
also be valid for modification in an extruder with plug flow.
Work is under way to predict MWD of polymer molecules
with and without vinyl groups using the pgf technique.
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Appendix A
A.l. Useful relationships for the pgf equations

Derivatives of the pgf functions appear in all the balances.
They may be evaluated as [17,28]:

bi2) =D mpm"" i) =D mp;m"" (AD)
m=1

m=1
A.2. Relationships between moments, concentrations and
probabilities

The weight probabilities are calculated using Eqgs. (A2)
and (A3):

Radicals : p,,(m) = o:n [Pm] = m[;m] (A2)
S m[P,] !
m=1
Polymer : p(m) = oom[Pm] = mlPy] (A3)
M,
> mlP,]
m=1

If the focus is on the pgf of the chromatographic distribution
(pgfc), the corresponding probabilities are given by Eqgs.
(A4) and (AS).
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Radicals : p.(m) = o:n [ M] = [ m] (A4)
2 Y2
Z m [Pm]
m=1
2 2
* Pm Pm
Polymer : pe(m) = Oom Pu] =2 ]\[/I ] (AS)
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